Protein Information

ID 358
Name complex I
Synonyms 39kD; CI 39kD; Complex I; Complex I 39kD; NADH dehydrogenase (ubiquinone) Fe S protein 2 like; NADH ubiquinone oxidoreductase 39 kDa subunit mitochondrial; NADH ubiquinone oxidoreductase 39 kDa subunit; NDUFA 9…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
18832013 Kim HY, Chung JM, Chung K: Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Exp Mol Pathol. 2004 Dec;77(3):210-3.
Scavengers of reactive oxygen species (ROS) have been shown to produce a strong antinociceptive effect on persistent pain, and mitochondria are suggested to be the main source of ROS in the spinal dorsal horn. To explore whether excessive generation of mitochondrial superoxide alone can induce pain, the effect of mitochondrial electron transport complex inhibitors on the development of mechanical hyperalgesia was examined in mice. Intrathecal injection of an electron transport complex inhibitor, antimycin A or rotenone, in normal mice resulted in a slowly developing but long-lasting and dose-dependent mechanical hyperalgesia. The levels of mechanical hyperalgesia after antimycin A, a complex III inhibitor, were higher than that with rotenone, a complex I inhibitor. A large increase of mitochondrial superoxide in the spinal dorsal horn and a strong antinociceptive effect of ROS scavengers, phenyl-N-tert-butylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) were observed in antimycin A-treated mice. The study indicates that the enhanced production of spinal mitochondrial superoxide alone without nerve injury can produce mechanical hyperalgesia.
31(0,1,1,1)