Protein Information

ID 358
Name complex I
Synonyms 39kD; CI 39kD; Complex I; Complex I 39kD; NADH dehydrogenase (ubiquinone) Fe S protein 2 like; NADH ubiquinone oxidoreductase 39 kDa subunit mitochondrial; NADH ubiquinone oxidoreductase 39 kDa subunit; NDUFA 9…

Compound Information

ID 1341
Name rotenone
CAS

Reference

PubMed Abstract RScore(About this table)
8656275 Higgins DS Jr, Greenamyre JT: [3H] dihydrorotenone binding to NADH: ubiquinone reductase (complex I) of the electron transport chain: an autoradiographic study. Exp Parasitol. 2002 Jan;100(1):54-61.
Abnormalities of mitochondrial energy metabolism may play a role in normal aging and certain neurodegenerative disorders. In this regard, complex I of the electron transport chain has received substantial attention, especially in Parkinson's disease. The conventional method for studying complex I has been quantitation of enzyme activity in homogenized tissue samples. To enhance the anatomic precision with which complex I can be examined, we developed an autoradiographic assay for the rotenone site of this enzyme. [3H] dihydrorotenone ([3H] DHR) binding is saturable (KD = 15-55 nM) and specific, and Hill slopes of 1 suggest a single population of binding sites. Nicotinamide adenine dinucleotide (NADH) enhances binding 4- to 80-fold in different brain regions (EC50 = 20-40 microM) by increasing the density of recognition sites (Bmax). Nicotinamide adenine dinucleotide phosphate also increases binding, but NAD+ does not. In skeletal muscle, heart, and kidney, binding was less affected by NADH. [3H] DHR binding is inhibited by rotenone (IC50 = 8-20 nM), meperidine (IC50 = 34-57 microM), amobarbitol (IC50 = 375-425 microM), and MPP+ (IC50 = 4-5 mM), consistent with the potencies of these compounds in inhibiting complex I activity. Binding is heterogeneously distributed in brain with the density in gray matter structures varying more than 10-fold. Lesion studies suggest that a substantial portion of binding is associated with nerve terminals. [3H] DHR autoradiography is the first quantitative method to examine complex I with a high degree of anatomic precision. This technique may help to clarify the potential role of complex I dysfunction in normal aging and disease.
117(1,2,2,7)