Protein Information

ID 318
Name Potassium channel (protein family or complex)
Synonyms Potassium channel

Compound Information

ID 332
Name 4-aminopyridine
CAS 4-pyridinamine

Reference

PubMed Abstract RScore(About this table)
10789695 McAlexander MA, Undem BJ: Potassium channel blockade induces action potential generation in guinea-pig airway vagal afferent neurones. J Auton Nerv Syst. 2000 Jan 14;78(2-3):158-64.
Electrophysiological studies of vagal sensory nerves with cell bodies in the nodose ganglion and mechanically sensitive receptive fields in the guinea-pig trachea/bronchus, were performed. Exposure of the mechanically sensitive receptive fields to 4-aminopyridine (100 microM-1 mM) caused pronounced action potential discharge in all fibres studied. Action potential generation was also produced by alpha-dendrotoxin, and in a subset of fibres, by barium. By contrast, neither iberiotoxin, tetraethyl ammonium, glybenclamide, BDS-II, nor apamin caused action potential generation in the vagal afferent nerve fibres. Tetramethylrhodamine dextran was instilled into the trachea to retrogradely label cell bodies within the nodose ganglion. In these cells, 4-aminopyridine caused a large depolarization of the resting membrane potential, concomitant with an increase in input impedance. The data suggest 4-aminopyridine- and alpha-dendrotoxin-sensitive ion channels within the airway afferent nerve membrane hold the resting membrane potential below the threshold for action potential generation. Mechanisms that lead to an inhibition of these channels will likely lead to an increase in excitability of the airway afferent neurones.
1(0,0,0,1)