Protein Information

ID 1205
Name salivary alpha amylase
Synonyms AMY1; AMY1; AMY1A; AMY1A protein; AMY1B; Salivary alpha amylase; Salivary alpha amylase precursor; AMY1A proteins…

Compound Information

ID 614
Name potassium thiocyanate
CAS potassium thiocyanate

Reference

PubMed Abstract RScore(About this table)
9352636 Suganuma T, Maeda Y, Kitahara K, Nagahama T: Study of the action of human salivary alpha-amylase on 2-chloro-4-nitrophenyl alpha-maltotrioside in the presence of potassium thiocyanate. Carbohydr Res. 1997 Sep 5;303(2):219-27.
The degradation mechanism of a synthetic substrate, 2-chloro-4-nitrophenyl alpha-maltotrioside (CNP-G3), by human salivary alpha-amylase (HSA) was investigated by kinetic and product analyses. It was observed that the enzyme attacked the various CNP-maltooligosaccharides (CNP-G3 to CNP-G6) releasing free CNP. Addition of 500 mM potassium thiocyanate (KSCN) was also found to greatly increase the rates of CNP-release. It was the fastest with CNP-G3, and, in the presence of KSCN, was almost comparable to that of degradation of maltopentaose (G5). On the other hand, addition of KSCN decreased the rate of cleavage between glucan-glucan bonds in maltopentaose. Product analysis showed that KSCN addition altered the cleavage distribution which occurred 100% at the bond between CNP and G3, and that product distribution of free CNP was largely dependent on substrate concentration. Formation of CNP-G6, a larger product than the original substrate CNP-G3, was found to be present in the digest at high concentrations of substrate and in the presence of KSCN. Based on these results, a degradation pathway for CNP-G3 involving transglycosylation besides direct hydrolysis is proposed. The increase of the CNP-release by the addition of KSCN would result from a corresponding increase in the interaction between the CNP moiety and the corresponding subsite near the catalytic site, as well as the enhancement of the catalytic efficiency.
7(0,0,1,2)